C-Reactive Protein Causes Insulin Resistance in Mice Through Fcg Receptor IIB–Mediated Inhibition of Skeletal Muscle Glucose Delivery
نویسندگان
چکیده
Elevations in C-reactive protein (CRP) are associated with an increased risk of insulin resistance. Whether CRP plays a causal role is unknown. Here we show that CRP transgenic mice and wild-type mice administered recombinant CRP are insulin resistant. Mice lacking the inhibitory Fcg receptor IIB (FcgRIIB) are protected from CRP-induced insulin resistance, and immunohistochemistry reveals that FcgRIIB is expressed in skeletal muscle microvascular endothelium and is absent in skeletal muscle myocytes, adipocytes, and hepatocytes. The primary mechanism in glucose homeostasis disrupted by CRP is skeletal muscle glucose delivery, and CRP attenuates insulin-induced skeletal muscle blood flow. CRP does not impair skeletal muscle glucose delivery in FcgRIIB mice or in endothelial nitric oxide synthase knock-in mice with phosphomimetic modification of Ser1176, which is normally phosphorylated by insulin signaling to stimulate nitric oxide–mediated skeletal muscle blood flow and glucose delivery and is dephosphorylated by CRP/FcgRIIB. Thus, CRP causes insulin resistance in mice through FcgRIIBmediated inhibition of skeletal muscle glucose delivery. Diabetes 62:721–731, 2013
منابع مشابه
C-Reactive Protein Causes Insulin Resistance in Mice Through Fcγ Receptor IIB–Mediated Inhibition of Skeletal Muscle Glucose Delivery
Elevations in C-reactive protein (CRP) are associated with an increased risk of insulin resistance. Whether CRP plays a causal role is unknown. Here we show that CRP transgenic mice and wild-type mice administered recombinant CRP are insulin resistant. Mice lacking the inhibitory Fcγ receptor IIB (FcγRIIB) are protected from CRP-induced insulin resistance, and immunohistochemistry reveals that ...
متن کاملEndothelial Fcγ Receptor IIB Activation Blunts Insulin Delivery to Skeletal Muscle to Cause Insulin Resistance in Mice
Modest elevations in C-reactive protein (CRP) are associated with type 2 diabetes. We previously revealed in mice that increased CRP causes insulin resistance and mice globally deficient in the CRP receptor Fcγ receptor IIB (FcγRIIB) were protected from the disorder. FcγRIIB is expressed in numerous cell types including endothelium and B lymphocytes. Here we investigated how endothelial FcγRIIB...
متن کاملConjugated linoleic acid supplementation enhances insulin sensitivity and peroxisome proliferator-activated receptor gamma and glucose transporter type 4 protein expression in the skeletal muscles of rats during endurance exercise
Objective(s):This study examined whether conjugated linoleic acid (CLA) supplementation affects insulin sensitivity and peroxisome proliferator-activated receptor gamma (PPAR-γ) and glucose transporter type 4 (GLUT-4) protein expressions in the skeletal muscles of rats during endurance exercise. Materials and Methods:Sprague-Dawley male rats were randomly divided into HS (high-fat diet (HFD) s...
متن کاملMyostatin Inhibition Prevents Diabetes and Hyperphagia in a Mouse Model of Lipodystrophy
Lipodystrophies are characterized by a loss of white adipose tissue, which causes ectopic lipid deposition, peripheral insulin resistance, reduced adipokine levels, and increased food intake (hyperphagia). The growth factor myostatin (MSTN) negatively regulates skeletal muscle growth, and mice with MSTN inhibition have reduced adiposity and improved insulin sensitivity. MSTN inhibition may ther...
متن کاملEndotoxin Mediated-iNOS Induction Causes Insulin Resistance via ONOO− Induced Tyrosine Nitration of IRS-1 in Skeletal Muscle
BACKGROUND It is believed that the endotoxin lipopolysaccharide (LPS) is implicated in the metabolic perturbations associated with both sepsis and obesity (metabolic endotoxemia). Here we examined the role of inducible nitric oxide synthase (iNOS) in skeletal muscle insulin resistance using LPS challenge in rats and mice as in vivo models of endotoxemia. METHODOLOGY/PRINCIPAL FINDINGS Pharmac...
متن کامل